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Abstract

Since the pioneering work of Wassilly Leontief, a remarkable amount of theoretical and empirical

work has continuously supported Input-Output modelling. In particular, the peculiar structure of

dynamic Input-Output models have originated, in numerous fields ranging from Mathematical

Economics to System Theory, an abundance of contributes. This paper deals with the computational

problem of managing regional growth within a dynamic multiregional Input-Output model. Starting

from the basic matrices of technological, capital and trade coefficients, the regional components

associated to a given group of regions are appropriately recognised and separated. A numerical example

based on the Italian case, is also discussed.

                                               
An earlier version of this paper was presented at the Thirty-fourth Annual Meeting of Western Regional
Science Association in San Diego and has benefitted from comments during the conference. The authors are
grateful for suggestions rendered by the anonymous referees. We also wish to thank Prof. G. Hewings and
P. R. Israilevich for their useful comments and suggestions.



2

1. INTRODUCTION

Recent theoretical and empirical evidences (Sommer and Hicks, 1993; Sonis et al.,

1995) have demonstrated that significant changes in the growth process of national

economies have to be addressed to local agglomerate processes. To this aim a large

amount of research effort have been addressed to multiregional dynamic Input-Output

models (Guccione et al., 1988; Sonis et al., 1993). The above scheme had to overcome

both theoretical and empirical difficulties. Theoretical difficulties due to the nature of

interregional linkages (Campisi and Nastasi, 1993) and the possibility of projecting

forward the Leontief dynamic system (Campisi et al., 1993). From the empirical point of

view, once the conventional data availability is accepted, the major problem is to

identify the best level of details to incorporate the spatial linkages and feedback effects

(Sonis et al., 1995). The aim of this paper is therefore to provide a workable tool to

overcome the above difficulties. The proposed approach is based on the balanced

multiregional balanced growth solutions provided by Campisi et al. (1991) and the

decomposition technique for linear systems developed by Meyer (1989). The first

scheme allows to evidence the capital accumulation process and multisectoral

multiregional interactions which evolve within a general equilibrium contest. Workable

assumption that each sector in the economy requires, directly or indirectly, either some

current flow or some capital input from all the other sectors operating in the same and

in the other regions is assumed. The Meyer scheme allows, on the other side, to

manipulate, through decomposition, large scale systems as the described one. The

advantage of integrating such tools mainly resides in the possibility of considering all

the available linkages deriving from modern data sources in an effective manner. The

proposed methodology, then, allows to condense in very limited amount of equations

all the complex relations arising from detailed multiregional models. The only

requirements are due to the computation of the dominant eigenvalue of a generalised

Leontief inverse matrix whose dimension is given by the product of the number of

sector by the number of regions and the presence of conventional round-off. These items

are not serious problems also for conventional Personal Computers. On the contrary the

computation of large scale eigenvectors is overcame by means of the computation of
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disaggregate components. Moreover, our research results allow to identify in terms of

casual linkages, all the components in disaggregate systems. By summarising, in

presence of a large scale multiregional I-O scheme, the proposed approach allows to

maintain the features of very disaggregated schemes with limited storage requirements,

give a straightforward interpretation of the components contributing to the growth

process and enable to choose the level of analysis with a large amount of flexibility.

The paper is organised as follows. In section 2 and 3 the multiregional Input-

Output model is introduced and its structural properties are analysed in detail. In

section 4 a technique allowing the decomposition at regional level of the growth factors

in the multiregional I-O model, is described. Moreover, in section 5 a brief description of

the related computer program structure, is presented. In section 6, finally the procedure

is applied to analyse the growth of the Italian economy on the basis of the 1985

biregional matrices of capital and technological requirements.

2. THE DYNAMIC MULTIREGIONAL INPUT-OUTPUT MODEL

In this section we present the structure of the multiregional dynamic Leontief

model which will be utilised in the sequel as the basis for our analysis (Campisi et al.,

1993). Consider an economic system subdivided into m spatially defined economies

(regional economies) where time elapses with a succession of discrete periods. There are

n productive sectors, each one producing only one commodity by means of only one

linear production process lasting only one period. Every sector requires several

resources to carry out its activity. Let ajsir be the current input of commodity i produced

in region r used to produce one unit of commodity j in region s; notice that the subscripts

and the superscripts denote, respectively, place of origin and destination):

  ajsir = xjsir (k)/xjs(k);     (i,j=1,2,...,n);     (r,s=1,2,...,m)                                     (1)

where xjsir(k) is the total current input from sector i in region r required in period k by

sector j in region s and xjs(k) is the total output produced in the same period by sector j

in region s. Each interregional current input coefficient ajsir can be split into a regional

coefficient ajsi, which represents the current input from sector i, wherever located,
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needed per unit of output of sector j in region s, and an interregional trade coefficient

tjsir, which represents the proportion of the total current input of i required by sector j in

region s supplied by sector i in region r :

ajsir = tjsir ajsi;     (i,j=1,2,...,n);     (r,s=1,2,...,m)                                      (2)

                          m                  
where   Σ  tjsir = 1       ∀ i, j, s.

                           r=1             

Let bjsir be the stock of commodity i produced in region r used as capital good in the

production of one unit of commodity j in region s :

  bjsir = kjsir(k)/xjs(k);     (i,j=1,2,...,n);     (r,s=1,2,...,m) (3)

where kjsir (k) is the total stock of commodity i produced in region r required as capital

good in period k by sector j in region s. Each interregional capital input coefficient bjsir

can be split into a regional coefficient bjsi, which represents the capital input from

sector i, wherever located, needed per unit of output of sector j in region s, and an

interregional trade coefficient tjsir, which represents the proportion of the total capital

input of i required by sector j in region s supplied by sector i in region r :

bjsir = tjsir bjsi;     (i,j=1,2,...,n);     (r,s=1,2,...,m) (4)

where the tjsir's for commodity i used as capital input are the same interregional trade

coefficients defined for commodity i used as current input for all i, j, r, s.

In order to facilitate the analysis the following assumptions are also imposed:

- ajsi_0, bjsi_0, tsir_0, (i,j=1,2,...,n), (r,s=1,2,...,m), and the ajsi, bjsi, tsir are constant

over time (any technological progress in the economy is excluded and spatial

trading relationships are stable);

- all the productive processes exhibit constant returns to scale so that the ajsi and the

bjsi do not change with respect to variations of output level xjs(k), for all i, j and s;

- there is a one period lag between the capital goods acquisition and their utilisation,

for all the acquiring sectors and for every capital good.
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Restricting the analysis to an economy without international exchanges, the equilibrium

relation between demand and supply for commodity i produced in region r can be

written in matrix form as follows

                          m
 xr(k)= Σ   Tsr{As xs(k) + Bs[xs(k+1)-xs(k)]} (5)

                         s=1

where xr(k), xs(k) and xs(k+1) are, respectively, the vectors representing the outputs

produced by the n sectors in region r during period k and in region s during periods k

and k+1; As is the nxn matrix of current input coefficients ajsi related to region s; Bs is

the nxn matrix of capital input coefficients bjsi related to region s; Tsr is the nxn

diagonal matrix of interregional trade coefficients from region r to s for all the n

commodities:

ts1r 0 ..... ..... 0
0 ts2r 0 0

Tsr = ..... ..... ..... ..... .....
..... ..... ..... ..... .....

0 ..... ..... 0 tsnr

Expression (5) may be interpreted as an equilibrium relation between production of

commodity i in region r and (demand as a current input) + (investment demand) for the

commodity i in region r. From (1), (2), (3) and (4) equation (5) can be expressed in a

more compact form as follows:

x(k) = TAx(k) + TB[x(k+1)-x(k)] (6)

where x(k) and x(k+1) are the vectors representing the outputs produced by all the

sectors in all the regions during the periods k and k+1, whereas T, A and B are nmxnm

matrices defined by the following relations:

T1
1 T2

1 ..... ..... Tm1

T1
2 T2

2 ..... ..... Tm2

T = ..... ..... ..... ..... .....
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..... ..... ..... ..... .....

T1
m T2

m ..... 0 Tmm

A1 0 ..... ..... 0
0 A2 0 ..... 0

A = ..... ..... ..... ..... .....
..... ..... ..... ..... .....

0 ..... ..... 0 Am

B1 0 ..... ..... 0
0 B2 0 ..... 0

B = ..... ..... ..... ..... .....
..... ..... ..... ..... .....

0 ..... ..... 0 Bm

By setting U=(I-TA)-1TB, where I is the nmxnm identity matrix, system (6) can be

transformed into:

x(k) = U[x(k+1)-x(k)]

Each element uijrs of U represents the total amount of commodity i produced in region

r required (directly and indirectly), as current and capital input, in order to increase by

one unit the production of commodity j in region s.

3. EXISTENCE OF BALANCED GROWTH SOLUTIONS

Before discussing the existence of a balanced growth path for the dynamic

multiregional input-output model (6), we need to recall some basic issues related to non

negative systems. If a square matrix is non negative i.e., all of whose elements are non

negative, then (Berman and Plemmons, 1979) its spectral radius is an eigenvalue, and in

correspondence of this eigenvalue there exists a non negative eigenvector. Moreover, an

irreducible matrix is characterised by exactly one (up to scalar multiplication) non

negative eigenvector and this eigenvector is positive. In combinatorial terms a non

negative matrix U irreducible if and only if for every pair (i, j) there exists a natural

number q such that uij(q)> 0. The characterisation of irreducibility has an interesting

graph theoretic interpretation. To this aim we define the associated directed graph,
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G(U), which consists of mn vertices g1, g2,....gmn where an edge leads from gi to gj if

and only if uij_0. A directed graph G is strongly connected if for any ordered pair

(gi,gj) of vertices of G there exists a sequence of edges (a path) which leads from gi to

gj. Therefore, since uij(q)> 0 if and only if there exists a sequence of q edges from gi to

gj, then a matrix U is irreducible if and only if G(U) is strongly connected. The forward

in time solution of system (6), then,  is related to the solution of the eigenproblem of U

(Campisi et al., 1991). Since both (I-TA)-1 and TB are non-negative, so is their product

U. Moreover if U is irreducible, it satisfies the hypothesis of the Perron-Frobenius

theorem (Campisi and La Bella, 1988): there exists a positive simple eigenvalue λ∗ of U

with an associated positive eigenvector v∗. Hence, if the Hawkins-Simon condition

holds, the irreducibility of matrix U is a sufficient condition for the existence of a

balanced growth solution. In order to explore the relations between the properties of U

and the balanced growth solution of system (6), the equivalence between the following

two eigenproblems can be observed (Szyld, 1985):

U v = λv    (7)

Hu = µTBu        (8)

where H = I-TA+TB and the eigenvectors of (8) are solutions at (6). Then, problems (7)

and (8) share their eigenvectors and the following eigenvalue condition  µi =

( λi + 1) / λi , ∀ i  holds. It follows that in the long run all sectors in all regions grow up

at the same rate µ∗=(λ∗+1)/λ∗ depending from dominant eigenvalue λ∗ and

proportions among them are established according to the components of eigenvector

v∗. Campisi and La Bella (1988) proved that U is irreducible if and only if the union

graph G(T)"G(A)"G(B) is strongly connected. It follows that in a multiregional system

where the Hawkins-Simon condition is satisfied and each sector in the economy utilises

at least one capital good in its productive process, the strongly connection of the graph

G(T)"G(A)"G(B) is a sufficient condition for the existence of a balanced growth solution.

Observe that if the graph G(T)"G(A)"G(B) is strongly connected, each sector of the

economy requires, directly or indirectly, either some current flow or some capital input

from all the other sectors operating in the same and in the other regions. This condition
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is less restrictive than the assumption of irreducibility on matrix TA or TB. The

irreducibility of U is, however, only a sufficient condition for the existence of a

balanced growth path. In fact, it is possible to show (Campisi and La Bella, 1988) that a

balanced growth solution can exist also in the case of a reducible U, i.e., when the

system is divided into two or more groups of sectors in such a way that the sectors of

some group do not need, neither directly nor indirectly, any current or capital inputs

from some other group of sectors.

4. THE  COMPONENTS OF MULTIREGIONAL GROWTH

The computation of the balanced growth path, however, often is an hard task:

since U is an nmxnm matrix, it may happen that the matrices dimension is too large to

be comfortably handled by standard methods. Thus, it may be useful to specify a

technique for disaggregating the eigenproblem into smaller ones. Meyer (1989) has

recently shown that it is possible to uncouple a nonnegative irreducible matrix by

using the concept of Perron complementation. In the sequel, we will follow the above

framework, which can be summarised as follows. Firstly we compute the dominant

eigenvalue of matrix U by means of standard techniques, than we decompose the

original problem in smaller ones. Of each of these smaller problems, all related to the

above unique dominant eigenvalue, we compute the dominant eigenvectors. Finally,

we reaggregate the single components into the original one. The advantage of the

proposed technique can be condensed in two arguments. The first is related to the

complexity of the problem: large-scale multiregional I-O systems require enormous

computing time and large memory requirements related to the computation of the

eigenvector components. The above procedure avoids this inconvenient and allows the

use of conventional Personal Computers. The second advantage, depicted in a

following section by means of a reduced scale exercise, allows to identify the sectoral

and regional components of growth. In addition, it allows to work at a predetermined

and/or wished regional or sectoral level of detail avoiding to maintain a large amount

of data but preserving all the necessary linkages. Matrices and casual relations are

therefore condensed into limited information. In spite of this advantages we need some
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technical jargon whose details are given in the sequel. In details, with reference to the

multiregional dynamic I-O scheme, the Perron complementation allows to derive a

sequence of smaller matrices having the following properties:

- each regional matrix is non negative and irreducible, so that it has a unique Perron-

Frobenius eigenvector;

- each regional matrix has the same dominant eigenvalue of U (so preserving at

regional level the overall growth properties);

- it is possible to determine the Perron-Frobenius eigenvectors of the regional

matrices completely independently of each other;

- each regional matrix resumes the long run information related to the region under

consideration;

- it is possible to couple these dominant eigenvectors back together in order to

produce the long-run components associated to the multiregional operator U.

Therefore, it is possible to uncouple the computation of this trajectory into smaller

problems. In this way the long run sector components for each regional production can

be separated from the multiregional model. Thus, let Drr (r = 1,...,m) be m regional

matrices of order n associated to the multiregional growth matrix U. Each matrix will

be non negative and irreducible with the same dominant eigenvalue of matrix U and a

unique associated eigenvector (Meyer, 1989). Therefore, it is possible to couple the Drr

eigenvectors back together to produce the eigenvector for the original matrix U so

allowing a structural analysis of long run growth rate and production mix. With

reference to model (6), the multiregional growth operator U is assumed irreducible and

its right eigenvector v∗> 0 appropriately normalised (the sum of its nm components

equal to 1). Moreover, let U(nm,nm) be partitioned as a matrix with nxn square

diagonal blocks:

U1,1......U1,n U1,n+1......U1,2n ...... U1,(m-1)*(n+1)......U1,mn

......... ......... .........

Un,1......Un,n Un,n+1......Un,2n ...... Un,(m-1)*(n+1)......Un,mn
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Un+1,1......Un+1,n Un+1,n+1.....Un+1,2n Un+1,(m-1)*(n+1)......Un+1,mn

......... ......... .........

U = U2n,1......U2n,n U2n,n+1.....U2n,2n U2n,(m-1)*(n+1)......U2n,mn

......... ......... .........

......... ......... .........

U(m-1)*(n+1),1......

U(m-1)*(n-1),n

U(m-1)*(n+1),n+1......

U(m-1)*(n-1),2n

...... U(m-1)*(n+1),(m-1)*(n+1)......

U(m-1)*(n-1),mn

......... ......... .........

Umn,1......Umn,n Umn,n+1.......Umn,2n ...... Umn,(m-1)*(n+1)......Umn,mn

U11 U12 ...... U1m

U21 U21 U2m

= (9)

......... ......... .........

......... ......... .........

Um1 Um2 ...... Umm

For each region r, let Ur denote the principal block sub-matrix of U obtained by

deleting its r-th row and its r-th column from U and Ur∗ and U∗r  respectively given by:

Ur∗=(Ur,1 Ur,2 .......... Ur,r-1 Ur,r+1 .............Ur,m)      

(10)

and      

U1,r

.......
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       U∗r =
Ur-1,r

(11)
Ur+1,r

.......

Um,r

In (10) Ur∗ represents the r-th row of blocks in (9) with Ur,r removed and in (11) U∗r

the r-th column of blocks with Ur,r removed.

By means of (10) and (11) we can therefore provide the following :

DEFINITION 1. For a given region r, it is possible to resume all the long run

information related to region r itself by means of the regional complement matrix of the

block matrix Urr in U defined as:

Drr= Urr+Ur∗( λ∗I-Ur)-1U∗r 

Drr is a square non negative irreducible matrix of order n with dominant eigenvalue λ∗

. Moreover if v∗ is partitioned into its regional components:

v1
∗

v2
∗

       v∗ =
.......

vm
∗

then

Drr vr
∗= λ∗ vr

∗

so that each Drr with r=1,2,.......,m, shares the dominant eigenvalue λ∗ with an

associated positive eigenvector vr
∗>0 (Meyer, 1989). This allows to state the following

DEFINITION 2. For a given region r, the regional eigenvector of Dr,r  is defined as:
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p r = 
v r 

∗ 

e 
T 
v r 

∗ 
= 

v r 
∗ 

ξ r 

where eT =(1,1,....1). pr represents the r-th segment of v∗ normalised through the scalar

ξr = eT vr
∗ called the regional coupling factor . The significance of this factor is

straightforward: it allows to measure and scale the growth of region r in comparison to

the national one.

Then the sectoral components of the r-th region are given by the elements of

eigenvector pr and, since v∗ can be written as a linear combination of the Dr,r dominant

eigenvectors with weights ξr, grow up at the same rate µ∗=(λ∗+1)/λ∗:

ξ1 p1

ξ2 p2

       v∗ =
.......          (12)
.......

ξm pm

Relation (12) decomposes the elementary factors of the growth process. In the long run,

the sector components of each region r are given by the components of the eigenvector

pr with dimension n, whereas proportions among them are given according to the

scalar weights ξr. Then (12) uncouples the multiregional eigenvector problem through

its regional complements. Notice that on one hand the above measures cannot easily

derived by means of the conventional approach and on the other hand they can be used

in connection with sensitivity measures of multiregional Input-Output models  (see for

instance, Campisi and La Bella, 1990 and Campisi et al., 1990). In addition, if U is

partitioned into m levels (so yielding m regional complements matrices), then all

regional eigenvectors pr can be determined independently and then combined in order

to construct back the multiregional eigenvector v∗. This allows the computation of the

multiregional stable production mix since the set of scalar weights



13

ξ1

ξ2

ξ∗ = .......

.......

ξm

is the eigenvector of the non negative and irreducible coupling matrix C(m,m) with

dominant eigenvalue λ∗, whose entries are given by  Crs = eT Ur,s ps . Thus, to produce

the normalised Perron vector v∗ for the original nonnegative matrix U it is necessary to

calculate firstly the dominant eigenvalue λ∗ followed by the regional eigenvectors pr

and scalar weights ξr.

Notice that, to optimise the computational requirements, a balancing act may be

performed when uncoupling the multiregional eigenvector problem through its

regional complements. As the number of regions m largely increases, the partition of U

becomes finer and the sizes of regional complements matrices become smaller, thus

making  easier to determine each regional eigenvector pr, even if the order of the matrix

inversion becomes larger.  At the same time, however, the size of the coupling matrix C

becomes larger, thus making it more difficult to determine each regional coupling

factor pr.  For these reasons, for very large problems it might be necessary to choose the

partition which best suits the needs of the desired application. Furthermore the same

procedure can be used to find the long-run components of growth of group of regions

or to focus  the direct and indirect effects of changes in selected sectors.

5. THE COMPUTER PROGRAM STRUCTURE

 In this section a brief description of the related computer program using

MATLAB is given. The program is divided in the following logic blocks as shown in

Figure 1:

a) Input files and preliminary data
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A directory contains a total of 3 files representing the necessary data base. The data

base:

- Matrix T, Interregional commodity flows coefficients

- Matrix B, Output / Marginal capital ratios

- Matrix A, Technological coefficients

Given these matrices, the computer program calculates directly the matrix U and his

dominant eigenvalue λ*.

b) Selection of analysis

In this phase the program asks to choose between a regional analysis and a sectoral

analysis. In this way it is possible both to select one or more regions and to select one or

more sectors. The sectoral analysis can be performed both at national and regional

level.

c) Matrix D definition and calculation of the related eigenvalue

The program allows to determine the growth matrix of the selected problem and

calculate the related dominant eigenvector associated with the dominant eigenvalue

previously calculated in accordance with the scalar normalisation factor.

d) Output files

The program provides a file that contains the results of the application.
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START 

 INPUT FILES  
  

MATRIX U,    *

     OUTPUT FILES 

   NEW APPLICATION  ?

no

STOP

  START 

yes 

          REGIONAL ANALYSIS SECTORAL ANALYSIS 

GROUP OF REGIONS R (R 1) GROUP OF SECTORS S (S 1)

MATRIX D

GROUP OF SECTORS S (S 1)

YES OR NOT

COUPLING FACTOR CALCULATION 

               DISAGGREGATE 
EIGENVECTORS CALCULATION  
                            

λ 

                AGGREGATE 
EIGENVECTOR CALCULATION 
                            

Fig. 1 - Overall computational process
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6. A NUMERICAL APPLICATION TO THE DUALISTIC GROWTH OF ITALY

In this section the case of a two-level partition is presented. Let R be the set of the

regions partitioned in two groups of regions G1 and G2 with G1"G2=R and G1(G2=_.

Then, U can be partitioned as

     U =
U11 U12      (13)

U21 U22

The multiregional eigenvector associated to the dominant eigenvalue λ∗ is given by

      v∗=
ξ1 p1 (14)

ξ2 p2

where p1 and p2 are respectively the regional eigenvectors of

D11= U11+U12 ( λ∗I-U22)-1U21    and    D22=U22+U21 (λ∗I-U11)-1U12

Moreover, since ξ1 and ξ2 are the two components of eigenvector of the coupling matrix

C = e
T 

U11  p1 e
T 

U12  p2

e
T 

U21  p1 e
T 

U22  p2

the regional coupling factors ξ1 and ξ2 are given by (Meyer, 1989)

ξ 1 = 
e 

T 
U 1 2 p 2 

λ 
∗ 

− e 
T 

U 1 1 p 1 + e 
T 

U 1 2 p 2 

a n d ξ 2 = 1 − ξ 1 

 In order to implement the model proposed in this section we need to build up the

biregional matrix U. In our numerical application the two groups of regions are the

North of Italy (which comprises the following administrative regions: Piemonte, Val

D'Aosta, Lombardia, Liguria, Trentino Alto Adige, Veneto, Friuli Venezia Giulia,

Emilia Romagna, Toscana, Marche, Umbria, Lazio) and the South of Italy (which

comprises the following administrative regions: Abruzzi, Molise, Campania, Puglia,
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Basilicata, Calabria, Sicilia, Sardegna). The regional economies are separated in the

following 12 sectors (into brackets the numbers of corresponding branches of ISTAT

classification at 1982 are reported):

 1.  Agriculture, forestry and fishing (1 - 5)
 2.  Energy (6 - 16)
 3.  Ferrous and non-ferrous metals (17 - 19)
 4.  Non-metal minerals (20 - 23)
 5.  Food, beverages and tobacco (40 - 54)
 6.  Chemical and pharmaceutical products (24 - 27)             
 7.  Mechanical, vehicles, textiles and other manufacturing (28 - 39;  55 - 68)
 8.  Construction (69 - 70)
 9.  Trade, hotels, restaurants, scrap (71 - 74)
10. Transportation and communication (75 - 81)
11. Credit, finance and insurance (82 - 83)
12. For-sale and not-for-sale services (84 - 92)

As far as current input coefficients are concerned, a national 92-branch intersectoral

flows table for Italy at 1985 and a 6-region, 12-sector intersectoral flows table for Italy

at 1982 are available. Aggregating the former into a 12-sector table and the latter into a

2-regions, 12-sector one, and updating the 1982 biregional distribution of the

intersectoral flows to 1985, it is possible to estimate the current input coefficients for

the North and the South of Italy at 1985 as reported in Table 1 whereas the

interregional trade coefficients (Campisi et al., 1991) aggregated at biregional level are

reported in Table  2.

It is well known the difficulty in the computation of capital stocks. With reference

to the Italian case, the results reported in Campisi and Nastasi (1989) are condensed in

Table 3 where capital input coefficients for North and South are reported. Then,

consider the Italian North-South economy at 1985 whose matrix U(nm,nm; n=12, m=2)

with dominant eigenvalue λ∗= 2.0196 (the equilibrium growth factor µ∗ is equal to

1.495), is partitioned in four sub-matrices UNN, UNS, USN and USS as shown in (13)

where 1=N=North and 2=S=South. Detailed U tables are available from the authors.

Then, from the above partition, the regional
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Table 1 - Current input coefficients

North

Sector 1 2 3 4 5 6 7 8 9 10 11 12

1 0.1860 0.0000 0.0001 0.0019 0.4053 0.0044 0.0089 0.0005 0.0104 0.0005 0.0001 0.0014

2 0.0284 0.6430 0.1391 0.1324 0.0296 0.0967 0.0219 0.0140 0.0319 0.0940 0.0049 0.0260

3 0.0008 0.0008 0.3396 0.0198 0.0057 0.0051 0.0719 0.0474 0.0024 0.0005 0.0000 0.0008

4 0.0005 0.0005 0.0134 0.1577 0.0061 0.0270 0.0053 0.1424 0.0020 0.0003 0.0000 0.0009

5 0.0925 0.0000 0.0000 0.0000 0.1674 0.0161 0.0049 0.0000 0.0482 0.0016 0.0000 0.0052

6 0.0421 0.0055 0.0166 0.0355 0.0120 0.3767 0.0460 0.0185 0.0042 0.0019 0.0008 0.0144

7 0.0076 0.0171 0.0270 0.0533 0.0360 0.0507 0.3143 0.1499 0.0597 0.0569 0.0104 0.0434

8 0.0003 0.0086 0.0038 0.0068 0.0018 0.0019 0.0023 0.0373 0.0039 0.0190 0.0054 0.0323

9 0.0410 0.0042 0.1502 0.0732 0.0627 0.0646 0.0721 0.0364 0.0668 0.0491 0.0089 0.0210

10 0.0090 0.0109 0.0557 0.0568 0.0336 0.0398 0.0340 0.0362 0.0306 0.1100 0.0182 0.0172

11 0.0110 0.0023 0.0084 0.0058 0.0084 0.0060 0.0109 0.0125 0.0145 0.0178 0.6981 0.0101

12 0.0046 0.0059 0.0250 0.0388 0.0204 0.0515 0.0365 0.0452 0.0594 0.0509 0.2111 0.0756

South

Sector 1 2 3 4 5 6 7 8 9 10 11 12

1 0.1429 0.0000 0.0001 0.0016 0.3307 0.0029 0.0116 0.0004 0.0074 0.0004 0.0001 0.0012

2 0.0218 0.5800 0.1190 0.1068 0.0273 0.1084 0.0210 0.0121 0.0259 0.0628 0.0048 0.0213

3 0.0006 0.0007 0.3553 0.0159 0.0073 0.0049 0.0517 0.0410 0.0021 0.0004 0.0000 0.0007

4 0.0004 0.0005 0.0125 0.1271 0.0070 0.0322 0.0037 0.1242 0.0016 0.0002 0.0000 0.0008

5 0.0711 0.0000 0.0000 0.0000 0.1571 0.0093 0.0087 0.0000 0.0343 0.0010 0.0000 0.0048

6 0.0323 0.0050 0.0149 0.0286 0.0110 0.3893 0.0389 0.0162 0.0028 0.0013 0.0008 0.0118

7 0.0059 0.0147 0.0235 0.0429 0.0341 0.0418 0.3062 0.1308 0.0520 0.0412 0.0107 0.0371

8 0.0002 0.0077 0.0035 0.0055 0.0020 0.0014 0.0019 0.0327 0.0031 0.0198 0.0056 0.0255

9 0.0315 0.0037 0.1327 0.0590 0.0547 0.0586 0.0633 0.0318 0.0545 0.0347 0.0091 0.0166

10 0.0069 0.0098 0.0505 0.0458 0.0306 0.0358 0.0293 0.0314 0.0253 0.0750 0.0186 0.0141

11 0.0084 0.0020 0.0072 0.0047 0.0077 0.0060 0.0105 0.0109 0.0114 0.0120 0.7208 0.0078

12 0.0036 0.0051 0.0235 0.0313 0.0197 0.0406 0.0310 0.0394 0.0491 0.0361 0.1851 0.0605
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Table 2 - Interregional trade coefficients* (diagonal element data)

North to North South to South

Sector Sector

1 0.8054 1 0.6817

2 0.7040 2 0.7988

3 0.9042 3 0.3521

4 0.9395 4 0.7421

5 0.8658 5 0.5365

6 0.8936 6 0.5700

7 0.9098 7 0.3630

8 1 8 1

9 1 9 1

10 1 10 1

11 1 11 1

12 1 12 1

*The interregional trade coefficients from South to North are obtained by subtracting the North to

North matrix from the identity matrix; the interregional trade coefficients from North to South are

obtained by subtracting the South to South matrix from the identity matrix.

Table 3 - Capital input coefficients**

North

Sector 1 2 3 4 5 6 7 8 9 10 11 12

1 0.0020 0.0005 0.0013 0 0 0 0 0.0025 0 0 0 0

7 1.0304 0.5840 0.5772 0.6293 0.2502 0.4402 0.3046 0.1338 0.3072 0.9810 0.2622 0.2778

8 1.7629 1.8113 0.2591 0.2856 0.1485 0.1631 0.1404 0.0347 0.1768 0.6861 0.4070 3.3509

South

Sector 1 2 3 4 5 6 7 8 9 10 11 12

1 0.0010 0.0004 0.0016 0 0 0 0 0.0016 0 0 0 0

7 0.5406 0.5920 0.7510 0.9180 0.3351 0.8380 0.7875 0.0900 0.3381 1.1555 0.5038 0.1958

8 0.9169 1.8201 0.3341 0.4130 0.1972 0.3078 0.3598 0.0231 0.1929 0.8012 0.7752 2.3420

**The capital coefficients for rows representing sector 2-6 and 9-12 are zeros.
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Table 4 - Matrix DNN=D11

Sector 1 2 3 4 5 6 7 8 9 10 11 12

1 0.0554 0.0409 0.0220 0.0226 0.0094 0.0154 0.0110 0.0070 0.0115 0.0383 0.0131 0.0506

2 0.4423 0.3717 0.1391 0.1519 0.0656 0.1008 0.0739 0.0288 0.0798 0.2728 0.1063 0.5482

3 0.4342 0.3524 0.1478 0.1614 0.0688 0.1081 0.0784 0.0311 0.0837 0.2832 0.1050 0.4937

4 0.3536 0.3477 0.0661 0.0726 0.0352 0.0441 0.0355 0.0108 0.0422 0.1569 0.0825 0.6167

5 0.0508 0.0393 0.0190 0.0205 0.0086 0.0139 0.0100 0.0043 0.0105 0.0352 0.0123 0.0511

6 0.2839 0.2262 0.1005 0.1096 0.0464 0.0737 0.0532 0.0215 0.0565 0.1903 0.0689 0.3078

7 2.4789 1.7531 1.0761 1.1739 0.4819 0.8055 0.5693 0.2395 0.5892 1.9356 0.6128 1.9019

8 1.8654 1.9099 0.2802 0.3087 0.1595 0.1775 0.1517 0.0383 0.1900 0.7342 0.4310 3.5220

9 0.4133 0.3361 0.1402 0.1530 0.0653 0.1025 0.0744 0.0296 0.0794 0.2688 0.0999 0.4721

10 0.2665 0.2267 0.0814 0.0890 0.0386 0.0588 0.0433 0.0166 0.0469 0.1612 0.0639 0.3398

11 0.2443 0.2075 0.0749 0.0819 0.0355 0.0541 0.0398 0.0154 0.0431 0.1481 0.0586 0.3103

12 0.3329 0.2843 0.1006 0.1100 0.0479 0.0726 0.0535 0.0205 0.0581 0.1999 0.0798 0.4286

Table 5 - Matrix DSS=D22

Sector 1 2 3 4 5 6 7 8 9 10 11 12

1 0.0281 0.0389 0.0291 0.0340 0.0129 0.0303 0.0292 0.0045 0.0130 0.0458 0.0245 0.0314

2 0.4572 0.6807 0.4275 0.5226 0.2010 0.4618 0.4495 0.0482 0.2015 0.7200 0.4081 0.6097

3 0.0844 0.1282 0.0761 0.0931 0.0360 0.0819 0.0801 0.0085 0.0361 0.1295 0.0751 0.1186

4 0.1271 0.2356 0.0654 0.0804 0.0348 0.0652 0.0696 0.0059 0.0344 0.1344 0.1090 0.2837

5 0.0163 0.0234 0.0163 0.0199 0.0076 0.0177 0.0171 0.0019 0.0076 0.0269 0.0146 0.0196

6 0.0823 0.1235 0.0759 0.0928 0.0358 0.0819 0.0798 0.0085 0.0358 0.1283 0.0734 0.1121

7 0.5146 0.7732 0.6323 0.7731 0.2903 0.6934 0.6641 0.0733 0.2919 1.0227 0.5211 0.5631

8 0.9587 1.899 0.3542 0.4377 0.2081 0.3276 0.3812 0.0248 0.2037 0.8436 0.8110 2.4387

9 0.1045 0.1703 0.0808 0.0989 0.0393 0.0856 0.0852 0.0086 0.0392 0.1438 0.0919 0.1755

10 0.0763 0.1136 0.0519 0.0636 0.0259 0.0541 0.0549 0.0053 0.0258 0.0963 0.0665 0.1435

11 0.0800 0.1372 0.0540 0.0662 0.0270 0.0562 0.0571 0.0055 0.0268 0.1004 0.0696 0.1512

12 0.0961 0.1668 0.0627 0.0769 0.0316 0.0650 0.0664 0.0063 0.0314 0.1180 0.0836 0.1864
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 complement matrix DNN=D11 and DSS=D22 are  presented in Tables 4 - 5. Each matrix

above is a square, nonnegative irreducible matrix of order 12 with common dominant

eigenvalue λ∗= 2.0196. Tables 4 - 5, therefore, give an interesting insight to the

contribution of each productive sector in each region to the North and South growth. A

more effective lecture can be obtained by means of p1 and p2 the dominant eigenvectors

of D11 and D11 respectively. Each term gives a measure up to one of the single sectoral

contributions at regional level. To obtain the national overall contribution, it is

necessary to rescale these elements by means of the regional coupling factors  ξ1 and ξ2.

Therefore, the dominant eigenvector v∗ for U can be obtained by (14):

0.0064 0.0082

0.0476 0.0614

0.0477 0.0616

0.0340 0.0439

0.0057 0.0074

0.0315 0.0407

0.2931  [0.7744] 0.3785

0.1732 0.2236

0.0454 0.0586

0.0284 0.0367

0.0261 0.0337

 0.0354 0.0457 ξ1 p1

     v∗ = =   =

0.0026 0.0114 ξ2 p2

0.0411 0.1821

0.0075 0.0333

0.0100 0.0442

0.0015 0.0066

0.0074   [0.2256] 0.0327

0.0542 0.2403

0.0715 0.3172

0.0089 0.0396

0.0063 0.0281

0.0066 0.0294

0.0079 0.0351
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Table 6 - Sectoral distribution of production

North South

Sector 1985
Balanced
Growth

Sector 1985
Balanced
Growth

1 0.0345 0.0082 1 0.0749 0.0114

2 0.0456 0.0614 2 0.0513 0.1821

3 0.0285 0.0616 3 0.0250 0.0333

4 0.0199 0.0439 4 0.0156 0.0442

5 0.0538 0.0074 5 0.0458 0.0066

6 0.0438 0.0407 6 0.0262 0.0327

7 0.2773 0.3785 7 0.1223 0.2403

8 0.0593 0.2236 8 0.1006 0.3172

9 0.1531 0.0586 9 0.1586 0.0396

10 0.0661 0.0367 10 0.0640 0.0281

11 0.0361 0.0337 11 0.0214 0.0294

12 0.1820 0.0457 12 0.2943 0.0351

The regional coupling factors, given respectively by ξ1 = 0.7744 and ξ2 = 0.2256, confirm

in the long run projection the historical dualism between the developed (North) and the

underdeveloped (South) regions of Italy. At national level, each sector in North weights

77.44% whereas the corresponding in the South only 22.56%. Notice that sectoral

distribution of production at 1985 presented in tables 6 is very different from the

balanced growth one (Campisi et al., 1991). In particular, the components associated to

branch 12 (For-sale and not-for-sale services) of the North and especially of the South

have a greater weight than the balanced ones. This is probably due to an oversized

public services sector. On the contrary, the components associated to branch 2 (Energy)

of the South and to branches 7 (Mechanical, autovehicles, textiles and other

manufacturing) and particularly 8 (Construction) of both the regions are too "light" in

comparison with the dynamic equilibrium ones. The other branches are less divergent

from the balanced growth trajectories. So, with a modest computational effort it has

been shown how to focus the long-run regional growth and appropriately manage the

components affecting the multiregional growth. Notice that the potentialities of the
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approach have here only been sketched. When working at a more detailed level of

analysis, it is possible to choose different levels of aggregation and focus the different

components of growth. Furthermore, it can be effectively be used in the more traditional

static I-O framework or to produce impact analyses.

7. CONCLUSIONS

The computation of the balanced growth of Input-output systems is an hard task.

When dealing with multiregional schemes new theoretical and computational

difficulties may be highlighted. Summing up traditional and new issues, in this paper

we have proposed some key results to manage the difficulties deriving from the

multiregional case. In particular, we have focused the problem of reducing the

difficulties arising from the computation of the eigenvectors components associated to

regional and sectoral growth. In addition, proportions among the growth components of

each region are provided. The procedure permits the reduction of the computational

complexity by allowing, at the meantime, an explanatory meaning of the structural

elements. The procedure has been tested to analyse the biregional (North-South) growth

of the Italian economy. The numerical exercise has been used to give light to the

numerical approach and discuss some problems arising from the structure of the Italian

economy.  
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