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Abstract 
 
The RAS method is used to update or regionalize a single matrix such that it conforms to new 
row and column totals. This paper presents a cell-correction of the RAS method (CRAS) that 
uses cell variation distributions calculated from input-output tables of different regions as a 
non-survey estimation technique for single region input-output tables. After solution of the 
regular RAS method, an additional optimization problem based on first order reliability 
methods (FORM) is solved, producing the most likely cell-corrections to the regular RAS 
solution. The advantage of the proposed formulation is its simplicity, which allows solving 
the optimization problem by means of an efficient iterative scheme. To test the behavior of 
the CRAS cumulative simulations are made with eleven symmetric input-output tables of 
Spanish regions for 1998-2005, harmonized to thirty economic sectors. 
 
Keywords: Regional input-output analysis, Non-survey methods, RAS, Spanish regions. 
 
 
1. Introduction 
 
RAS is known as an iterative technique to update input-output (IO) tables, given an old table 
and new row and column totals (Stone, 1961, Bacharach, 1970). It is also used to construct 
regional input-output tables given a national IO table or given an IO table of a different region 
in combination with the row and column totals of the region at hand (Hewings, 1969, 1977). 
Both ideas are combined when an old interregional IO table has to be updated given new 
regional row and column totals, and new national cell totals (Oosterhaven, Piek and Stelder, 
1986). All these applications have in common that one single (old) matrix is given to which 
minimal information is added such that it satisfies some set of (new) constraints.3  
 In view of the tremendous amount of national, regional, interregional and international 
IO tables now readily available on the internet, it is surprising that hardly any attention has 
been paid to the problem of constructing a new IO table using the information of as many of 
the existing IO tables that is relevant to the construction problem at hand. The one exception 
is the Cell-Corrected RAS method (CRAS) developed by Mínguez, Oosterhaven and 
Escobedo (2009). It is tested on the problem of updating Dutch IO tables over the period 
1969-1986, using as many of the older tables that are available. In this setting it is concluded 
that CRAS performs better than RAS when gradual changes need to be forecasted. Using 
many old tables leads to worse results than only using the most recent single table when 
sudden shocks, such as the oil price rises of 1973-74 and 1979-80, need to be covered. 
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3 Meanwhile it has been proved that the old iterative solution to the RAS updating problem (Stone, 
1961) is equivalent to solving the non-linear minimization of information gain from information 
theory (Bacharach, 1970, Snickars and Weibull, 1977, Bachem and Korte, 1979). 
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 Here we will test how CRAS performs as a non-survey estimation technique for 
constructing regional input-output tables (IOTs). It should be noted that the temporal 
projection of IOTs is far simpler than the spatial projection of IOTs that is our current topic. 
The reason for this is that time is one-dimensional and uni-directional (from past to future). 
Space, however, is at least two-dimensional and bi-directional. Moreover, distance may be 
defined in many ways, e.g. physical or socio-economic, whereas time essentially is simply 
time. Hence, when only one single IOT is used for a temporal RAS, the clearly best choice is 
to take the most recent IOT available. When, however, a single IOT is used for a spatial RAS, 
the best choice is not so obvious. It is not simply the IOT of the region most close by physical 
space. In stead it is the IOT of the region most closed by in terms of IO structure, but which 
region that is not clear beforehand, as will be shown in the application. 

To test CRAS as a spatial projection method we need a series of identically defined, 
survey-based IOTs of more or less comparable regions. The IOTs need to be survey-based, as 
non-survey IOTs are not suited for testing a non-survey construction technique, while they 
need to be identically defined across regions for the obvious reasons. This practically restricts 
the choice to a set of regions within one and the same country. We will use the set of single 
region survey-based symmetric IOTs for 11 Spanish regions as collected and harmonized for 
the construction of the seven region interregional semi-survey IOT for Spain for 2000 
(Escobedo and Oosterhaven, 2009). As Spain has 17 regions, it follows that 6 Spanish regions 
do not have a survey-based symmetric IO table. If the test on the eleven existing IOTs is 
successful, the obvious first application of CRAS at the regional level would be the non-
survey construction of the six yet non-existent Spanish regional IOTs.4 
 The setup of this paper is as follows. Section 2 will briefly summarize the nature of 
the Cell-Corrected RAS method and the nature of its use as a regional non-survey IOT 
construction method. Section 3 will discuss the setup of the test on the existing 11 regional 
symmetric IOTs. The core of the problem is twofold. First, the test has to be set up such that it 
comes as close as possible to its potential use as a non-survey technique. Second, a solution 
has to be found for defining the structural IO distance between the regions at hand. Section 4 
discusses the results of the comparison of the 11 survey symmetric IOTs with their non-
survey estimates, each based on application of CRAS to increasing amounts more and more 
different regional survey IOTs for the remaining regions. Section 5 concludes that CRAS 
performs better than RAS when a limited set of survey regional IOTs is used that are close to 
the IOT that has to be projected. When more IOTs are added of regions with more different 
IO structures CRAS leads to worse results than using RAS on the region that is most close by 
in IO structure terms. 
 
 
2. The Cell-Corrected RAS method (CRAS) 
 
The goal of conventional regionalizing methods consists on obtaining an input-output 
transactions matrix RZ  for region R  of dimension m  by n  as close as possible to the input-
output transactions matrix SZ  from region or nation S  of the same dimension, knowing only 
the margins (the row and column sums) of the target matrix. 
 
2.1 Statement of the programming model 
 
The proposed method has two stages. 

                                                 
4 There are two more Spanish regions with IO data, Cataluña and Canarias, but they only have a use 
table. The application of CRAS to Cataluña and Canarias may therefore be more accurate than that for 
the other 4 regions. 
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In the first one, data available for different regions are used in a standard RAS 
approach to estimate the parameters of the distributions of statistical deviations between the 
projected (RAS) regional IO tables and the true (survey) regional IO tables, ),( eeNe σµ≈ : 

(1) SRTRnjmi
z
z

e SR
ij

R
ijSR

ij ≠==== ;...,,1;...,,1;...,,1;~ )(
)(  

Where )(SR
ije  is a stochastic term representing the unexplained deviation if we use S  as base 

matrix to calculate matrix R  of by means of RAS; )(~ SRz  is the RAS projection of region R  
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That is, we will have T  values for e
ijµ  and e

ijσ , one per region. 
 The second stage of the model uses the data of (2) to correct the RAS projection for 
region R ( )(~ SRz ) by means of solving the following optimization problem: 
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Where R

iu equal the row sums of the transaction matrix RZ , and R
jv equal the column sums of 

the transaction matrix RZ . Once the optimization problem (3)-(6) is solved and the optimal 
values 

*)(SR
ije are available, the solution of CRAS, the values of the transaction matrix 
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Where (*) refers to the optimal values of eR(S). 
 
2.2 Solution of the programming model 5 
 
It is instructive and handy to derive an explicit solution to better understand the behavior of 
the model. Consider the Lagrange function associated with the optimization problem (3)-(6): 
 

                                                 
5 In this paragraph we skip the superscript )(SR  to simplify the notation. 
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where iλ  and jγ  are the Lagrange multipliers.  

The derivatives of the Lagrange function with respect to e , λ  and γ  are: 
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Note that (9)-(11) represents a linear system with the following structure: 

(12) 
















=

























+

+

+

+
+++

+

)(

)(

)(

)(

)(

)(

),(),(

),(),(

nm

nm

mxn

nm

nm

mxn

nmnm
T

mxnnm

nmmxnmxnmxn

v
u
ce

OB
BA

γ
λ  

 
where the dimensions of the corresponding matrices are in parentheses. Matrix A  is a 
diagonal matrix with ( )22 e

ijij ea = , matrix B  contains the RAS solution ijz~  and O is an zero 
matrix. Note that for convenience the deviation matrix e  has been reorganized in a column 
vector. The elements of the vector c  are ( )22 e

ij
e
ijij ec µ= , and u  and v  are the vectors with the 

row sum and column sums of the target matrix, respectively. 
 For the system of Equations (12) to have a guaranteed unique solution, the rank of the 

coefficient matrix must be equal to its dimension ( )nmmxn ++ . The first column block 
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has rank mxn  if 0≠ijσ , ij∀ , while the standard deviations are finite, because in that case A  
is a full diagonal matrix. However, the rank of matrix B  is 1−+ nm  if 0~ ≠ijz , ij∀ , because 
in (10)-(11) there is a redundant constraint due to the compatibility condition that the sum of 
the row totals should equal the sum of the column totals, •• = vu . This redundancy must be 
removed. So (12) must be generated eliminating one constraint in (10)-(11), no matter which. 
 
3. Testing CRAS as a non-survey regional IOT method 
 
Next, we discuss how applying CRAS to the 11 Spanish survey-based regional IOTs has to be 
set up in order to test CRAS as a non-survey regional IOT construction method. The core of 
the problem is twofold. First, the test has to set up such that it comes as close as possible to its 
potential use as a non-survey technique (section 3.1). Second, a solution has to be found for 
defining the structural IO distance between the regions at hand, in order to determine how the 
performance of CRAS changes when the information of more and more regional IOTs is 
used. 
 
3.1 Setting-up CRAS as a non-survey IO construction technique  
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When we assume that transit trade is zero, the layout of the typical Spanish survey-based IOT 
for region R is shown in Table 1. The core problem is to use the 11 survey IOTs to set up a 
situation that resembles that of the non-survey estimation of the lacking 6 IOTs, as much as 
possible. The solution of this problem should be based on the data that are indicated with 
“given” in Table 1. We claim that the data indicated with “estimation” in Table 1 can be 
estimated easily from the data that are “given” for the 6 Spanish regions for which there is not 
yet a regional IOT. The data indicated with “CRAS” then remain to be estimated by means of 
either RAS or CRAS.  
 
Table 1. Layout of the standardized Spanish regional input-output table* 
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* The meaning of the symbols is: x = total output and total use; z = intra-regional intermediate and final 
demand; SR, = Spanish regions; m = number of supplying sectors; n = number of purchasing sectors; y = 
indicator of final demand category, f = number of final demand categories; e = exports; E = Rest of Spain 
(RoS); M = Rest of the world (RoW); p = imports; g = value added. 

 
The arguments for making this selection are as follows. We, of course, assume that 

nothing is known about both the intra-regional transactions and the exports and imports with 
regards to the Rest of Spain (RoS), because estimating them is the core of any non-survey 
estimation of regional IOTs, and we should not assume that problem away by using the 
survey row and column totals of these matrices while comparing RAS or CRAS with a survey 
IOT. Unfortunately, in the past it has been assumed that the total of the intra-regional 
purchases and sales per regional sector were known a priori. As a consequence, it was 
unjustly concluded that RAS, as a non-survey technique, performed far better than competing 
non-survey techniques, such as e.g. the Location Quotient method (see Schafer and Chu, 
1969), that have been developed for the difficult estimation of precisely these intra-regional 
totals (see also Thuman, 1978).  

For the 6 Spanish regions without an IOT the exports to the Rest of the World (RoW) 
are given, as Eurostat requires National Statistical Offices (NSOs) to collect such data. The 
same holds for regional sectoral gross value added at market prices and its constituent 
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components (net taxes on products, other net taxes on production, compensation of employees 
and gross operating surplus). Unknown total use and total output per regional sector may be 
estimated easily by using sector-specific ratios with gross value added at market prices as 
their base. These ratios may be calculated either from the Spanish national IOT or from an 
appropriate average of the known regional IOTs. In order to separate the estimation error of 
these unknown totals from the estimation error of CRAS, we will use the actual information 
of each of the 11 regional survey-based IOTS while testing CRAS. 

A more problematic decision is whether or not to assume that - for those 6 regions - 
the imports from the Rest of the World (RoW) can be estimated a priory or not, either as a full 
matrix or as a single row. The only regional foreign import data readily available in Spain are 
the detailed totals by products by region. Hence, it has to be assumed that all purchasing 
sectors and all categories of final demand have the same RoW import ratio. This will of 
course introduce an estimation error. In order not to pollute the estimation error of CRAS with 
the RoW import estimation error, we will use the RoW survey data while testing CRAS. 

When the ‘given’ and the ‘estimated’ data are taken from the survey IOT of region R, 
RAS and CRAS are competing to estimate the remaining data. The IO data of the ten 
remaining regions S  that form the database to estimate the remaining IO data for region R 
thus have the following structure: 
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Note that compared with Table 1, we have aggregated the RoS import table to a single RoS 
import row, for reasons to be given shortly. 

For the eleventh region R we only need the column and row sums of (13), i.e. we need 
to estimate: 
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to be substituted in (4)-(5).  
The column sums of intermediate and local final demand satisfied by products from 

the whole of Spain can be calculated simply from the ‘given’ and the ‘estimated’ non-IO 
survey data in Table 1: 
 
(15) 

ME R
q

R
q

R
q

R
q

R
q

R
q pgxpzvfnq •••• −−=+=⇒+≤≤1  

 
The row totals of the own sectors intermediate and final sales to the whole of Spain 

are also calculated simply from the ‘given’ and the ‘estimated’ non-IO survey data in Table 1: 
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The more difficult problem is how to estimate the row totals of the matrix of imports 

from RoS and the column total for the exports to RoS in Table 1, without using the info from 
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the survey IOTs.6 We see only one reasonable solution, namely to estimate only a single row 
of imports from RoS instead of a full matrix. When we estimate region R using the data of 
region S, we use region S its RoS import ratio ( Sη ) and region S its RoS export ratio ( Sε ) to 
estimate the total intra-regional transactions for region R(S). These two aggregate domestic 
trade coefficients are calculated from the survey IOT of region S, as follows: 
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The exports’ column total and the imports’ row total with regard to RoS then follow as 

the residuals: 
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Where the intra-regional transaction total is calculated as the unweighted average of the 
estimates with the aggregate export coefficient and the aggregate import coefficient of region 
S:  
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The calculations (15)-(20) will be made 110 times, i.e. for each of the 11 applications 

of CRAS we have survey IOTs for the 10 remaining regions S available,7 which will be used 
to make ten different non-survey RAS estimates for each of the 11 regions R.8  

Subsets of these ten RAS estimates for each R will be used to calculate the average 
deviation and the standard deviation of (2), which will then be used in the second step of 
CRAS to produce the cell-corrected estimate of CRAS according to (7). 

 
3.2 Accuracy of different RAS estimates for the Spanish regional IO tables 
 
The next problem is which subsets of S to use. In temporal projections this choice is simple. 
The most recent table is the best choice. Temporal RAS and CRAS projections are simply 
compared by adding more and more less recent IOTs, to calculate the performance of both 
methods (see Minguez et al. 2009). In spatial projections this is far more complicated. 
Theoretically, it is still simple. The best choice for RAS is to take the survey IOT of the 
region S that resembles the projection region R best, and the best choice for CRAS is to add 
the second-best, the third-best etc. regions S. Empirically, however, it is not known 
beforehand which regions is first-best, second-best etc. To test RAS versus CRAS, our choice 
is to compare the best choice of regions in both cases. Hence, we have to determine the rank 
order of the 10 non-survey RAS projections of each of the 11 survey IOTs. To determine this 
rank order and to evaluate the performance of CRAS we will only compare the intra-regional 

                                                 
6 This is precisely the reason why using a national IOT to construct a regional IOT can not be done 
with any measure of accuracy, as the national IOT does not contain any information on interregional 
trade at all. 
7 We use the symmetric IO tables of 11 regions in current prices with 30 sectors, all of them from the 
period 1998-2005. 
8 Note that all RAS solutions are obtained within an error tolerance of 1×10−6. 
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parts of the IOTs, thus excluding estimates of the trade with the RoS. We could also compare 
the RoS results separately, but the comparing the intra-regional part is far more important as 
its estimation errors determine the estimation errors of the regional multipliers for which 
regional IOTs are used most. 

The comparisons are made by inspecting the distance between the projection z and the 
true value truez , using different matrix distance measures (deMesnard and Miller, 2006). We 
focus on additive norms truezz − , as using multiplicative norms ( ) ( )truezz lnln −  does not 
change their basic properties (deMesnard, 2004). We will use the following norms: 

 
• Mean Absolute Percentage Error (Butterfield and Mules, 1980): 
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• Normalized Squared Error (Deming and Stephan, 1940): 

(26) 
( )

∑∑
−

=
i j

true
ij

true
ijij

z
zz

NSE
2

 

• Weighted Normalized Squared Error, given by: 
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• Minimum Information Gain (Tilanus and Theil, 1965): 
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Once the norms are calculated for both methods, the comparison is made with the following 
formula: 

(29) %100~
ˆ~
×

−
=

n
nncp  

where n~  and n̂  are the norms obtained when using the RAS and CRAS method, respectively, 
and pc  is the performance comparison parameter that gives the percentage difference between 
the CRAS and the RAS method. Positive values of pc  imply a better performance of CRAS. 

From the raw Spanish regional IO tables we calculate eleven harmonized IOTs and the 
11x10 sets of u  and v  vectors (row and column totals of the RAS part). Then we estimate 
each of the 11 non-survey regional IOTs by using each of the remaining 10 regional IOTs as 
the base matrix for a regular RAS estimate. The results are ordered by the size of their 
estimation errors, as shown in Table 2 for the WAPE norm, which we consider to be the 
individually most relevant distance measure. Figure 2 shows the unweighted average of all 
five norms used. See Figure 1 for the location of the Spanish regions. 
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Figure 1. Spanish regions with an regional symmetric IO table are bold and in italics. 
 

In both Table 2 and Figure 2 we note that Aragón and Castilla y León are the two 
regions that in general give the most accurate RAS-estimate for the other ten regions. This 
may be due to their economic structure, which is not strongly specialized in specific sectors. 
On the other extreme we see that Balearic Islands in general offers the worst base matrix, due 
to the fact that this inland economy is very different from the rest of the Spanish regional 
economies. The capital region of Madrid also proves to be bad starting point for spatial 
extrapolation. This clearly indicates that the performance of using RAS as a non-survey 
technique in the old fashioned way very strongly depends on the right choice of the base 
matrix.  
 
Table 2. Rank order of WAPE difference between original tables and RAS estimates 
  Target regional input-output table 
  ada ara ast bal clm csl cva gal mad nav pva 

1st  csl csl ara nav csl ara clm csl clm csl csl 
2nd  pva nav csl clm nav nav ara ara nav ara ara 
3rd  ara ast nav cva pva ast ada ada pva pva nav 
4th  ast ada ada mad ara clm csl nav ast ast clm 
5th  gal gal pva ada ast gal nav pva csl clm ada 
6th  clm pva gal ast cva pva pva clm bal gal cva 
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FIGURE 2. Average of five norm ranking of the regional IOTs as base matrices for RAS. 
 
By choosing the first-best region in each single projection we will give RAS a head start to 
CRAS, but to not disadvantage CRAS unduly we will successively add the second-best, the 
third-best etc. when comparing CRAS with RAS. 
 
4. Results of comparing RAS with CRAS with only the best five regions 
 

Below follow preliminary results, which compare only the best five regional IOT 
when applying CRAs with the single best regional IOT in case of RAS. To make this 
comparison we estimate the parameters of the distributions of statistical deviations between 
the projected and the true IO tables for each of the regional Spanish tables when they are used 
as goal matrix in the RAS projection, as it is indicated in Equation 1. Then we calculate the 
average and standard deviation corresponding to those statistical deviations as in Equations 
(2a) and (2b). 
 After this we compare the performance of RAS method when we use the five closest 
regions to calculate the goal region, where we have 5x11 estimates, with the performance of 
CRAS method when we do just the same routine but with the difference that when we use a 
certain regional IO table as a base matrix we modify the RAS solution with the statistical 
deviations associated to the objective table. 
 If we look in detail at the minimum information gain ratio (MIG) ratio in Table 4, 
based on Equation (29), we see that in the 55 cases only five present a worse CRAS result 
than the RAS one. We can also see that regions as Aragón and Castilla y León sometimes 
perform worse with CRAS than with RAS, because they do well with RAS. On the other hand 
a region as Madrid, and specially Islas Baleares, improves around a 50% as an average when 
CRAS is used to calculate those regional IO tables. 
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Table 4. MIG ratio (%) for regional forecasts with information of 5 closest IO tables 
  Target regional table 
  ada ara ast bal clm csl cva gal mad nav pva 

ada  -1%  -9% 3% 19%   
ara 19%   54% -11% 48% 63% 31% 
ast    54% 27%  39% 11%
bal      
clm 1% 18%  28% 35% 29%  
csl 14% -31% 16% 31% 47% 23% 62% 11% 
cva 17%  47% 36% 26% 35% 41% 32%  8%
gal   35% 60%  40% 8%
mad  49%  44%   26%
nav 22% -1% 37% 36% 19% 37% 56%  2%

B
as

e 
m

at
rix

 

pva   14% 52% 17% 24%  9% 
 

Finally we discuss the position of the CRAS estimates in the rank order with respect to 
the five competing RAS estimates, with special attention to the question whether an a priori 
choice of the best RAS-base region could have been made in case CRAS does not give the 
single best result. As we can see in Table 5 this is clearly the case in the relation between the 
regions of Aragón and Castilla y León, where the RAS approach is the best. This may be due 
to the fact that Castilla y León and Aragón are similar regions as they are inland, relatively 
big in area and with similar economic structure. In fact, Aragón is the closest economic 
structure out of the ten regions to Castilla y León. 
 
Table 5. Best base matrix according to the different performance indicators. 
 Objective regional table 
 ada ara ast bal clm csl cva gal mad nav pva 
MAPE ara* ada* nav* gal* ara* ara ara* pva* ara* ara* ast 
WAPE csl csl csl ast* ara* ara clm nav* ara* ara* nav 
NSD nav csl gal* cva ara ara ara* pva ara* pva gal 
WNSD csl csl csl ast* ara* ara clm csl* ara* ara nav 
MIC csl* csl gal* gal* ara* ara csl* pva* csl* ara* nav* 
Note: without * = RAS method; with * = CRAS method. 
 

A special comment deserves the Figure 3 where we can see that in eight out of eleven 
occasions a CRAS estimate was ranked first as an average. There were three exceptions; two 
are relative to the above depicted relation between Castilla y León and Aragón, where each 
RAS estimate is the best approach for each other. The third and last exception deals with the 
case of País Vasco, where the best estimate is the RAS approach with base matrix as Navarra. 
This may be due to País Vasco is a very specific region in Spain and the closest economic 
structure to this region is Navarra. 
 In the eight cases out of eleven where one of the CRAS estimates was ranked first as 
an average the base matrix was a region which has a close economic structure to the region 
we want to approximate. In five occasions, Andalucía, Castilla-La Mancha, Comunidad 
Valenciana, Madrid and Navarra, the CRAS estimate with Aragón as base matrix was the best 
approach, what involves that a relatively medium-large region like Aragón, with a balanced 
economic structure which has no weak sectors and geographically central and with good 
transport infrastructures with the main regions, may be used as a base matrix with CRAS 
method to calculate other regions which are large (Andalucía, Castilla-La Mancha, 
Comunidad Valenciana) or small and developed (Madrid and Navarra). The other three 
remaining regions (Asturias, Galicia and Baleares), which are coastal and small had a best 
estimate with a CRAS approach based on a similar region. 
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FIGURE 3. Average five norm ranking of the regional IOTs as base matrices for RAS and CRAS. 
 
 
4. Preliminary conclusions 
 
The availability of many different regional input-output tables provides the researcher with 
extra information that may be used to improve the accuracy of the RAS method to construct 
regional IO tables. We use that information by means of the CRAS method, that adds cell-
specific corrections to RAS, a biproportional method which uses only one single known 
matrix. CRAS, however, uses all matrices that are considered relevant for the projection 
problem at hand, in this case, the five closest, in terms of economic structure, regional tables 
of a country. The cell corrections of CRAS are determined by minimizing the sum of the 
squared mean deviations of RAS projections between the multiple known tables, in time or 
space, weighted by the inverse of their standard deviation. 
 The RAS method is the best option when we want to obtain a regional table and we 
have another regional table very close in terms of economic structure. Nevertheless, if we do 
not have a single clearly close regional table but we have a set of regional tables more or less 
close to the regional table we want to approximate, CRAS outperforms RAS as the best 
estimate, as a CRAS-obtained matrix is based on the closest regional economic structure out 
of that set of five regions. Specifically in the case of regions with general characteristics and 
no singularities (small size, specific main economic sectors, coast, etc.) a CRAS estimate 
based on a medium-large region with a balanced economic structure and a relatively central 
position with good transport infrastructures may be the best approach. 
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